Hadamard Matrices and Reed-Muller Codes

Hadamard Matrices. In the 19th century, Hadamard considered the sizes of the determinants of $n \times n$ matrices A with all entries in [-1, 1]. Since the norm of each row is at most \sqrt{n} and the absolute value of the determinant is a measure of the volume of the box formed by its row vectors in \mathbb{R}^n . It is natural to conclude the determinant is at most $n^{n/2}$ and the row vectors should be orthogonal. For example, let row 1 be 1 1 and row 2 to be 1 - 1, then the area of the square formed by these two vectors is 2. Matrices that have +1 or -1 as entries with orthogonal rows and orthogonal columns are important in various applications.

Definition. A $n \times n$ matrix H is a <u>Hadamard matrix (of order n)</u> if and only if its entries are ± 1 and it satisfies $HH^T = nI$. Two Hadamard matrices are <u>equivalent</u> if and only if one of them can be obtained by the other after permuting rows or columns or multiplying rows or columns by -1. A Hadamard matrix is <u>normalized</u> if and only if all entires of its first row and first column are +1. (Clearly, every Hadamard matrix is equivalent to a normalized one.) Often the enties of a Hadamard matrix are written as + or -, which corresponds to 1 or -1 respectively.

Example. (1),
$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
, $\begin{pmatrix} + & + & + & + \\ + & + & - & - \\ + & - & + & - \\ + & - & - & + \end{pmatrix}$ are normalized Hadamard matrices of

orders 1, 2, 4 respectively.

<u>Theorem.</u> If H is a Hadamard matrix of order n, then n = 1, 2 or $n \equiv 0 \pmod{4}$.

Proof. The cases n < 4 are easy to check. For $n \ge 4$, first normalize H. Since the top 2 rows are orthogonal, row 2 contains n/2 +'s and n/2 -'s. By permuting columns, we may assume the +'s in row 2 are in the first n/2 entries and the -'s are in the last n/2 entries. For row 3, let there be a +'s under those columns with +, + as top 2 entries, b -'s under those columns with +, + as top 2 entries, b -'s under those columns with +, - as top 2 entries.

$++\cdots++$	$++\cdots++$	$++\cdots++$	$++\cdots++$
$++\cdots++$	$++\cdots++$		
$++\cdots++$	$\underbrace{\cdots}_{h \text{ columns}}$	$\underbrace{++\cdots++}_{c \text{ columns}}$	$\underbrace{\cdots}_{d \text{ columns}}$

Then a + b = n/2 and c + d = n/2. Taking inner product of row 1 and row 3, we get a - b + c - d = 0. Taking inner product of row 2 and row 3, we get a - b - c + d = 0. Solving the 4 equations of a, b, c, d, we get n = 4a = 4b = 4c = 4d.

To produce Hadamard matrices of large orders, we introduce some auxiliary concepts.

Definition. Let A be a $m \times n$ matrix with entries a_{ij} and B be another matrix. The <u>Kronecker product</u> (or <u>tensor product</u>) of A and B (denoted by $A \otimes B$) is the matrix

$$A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}B & a_{m,2}B & \cdots & a_{mn}B \end{pmatrix}$$

Example. For
$$A = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 4 \\ 0 & -1 \end{pmatrix}$, $A \otimes B = \begin{pmatrix} 1B & 0B \\ 2B & 3B \end{pmatrix} = \begin{pmatrix} 2 & 4 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 4 & 8 & 6 & 12 \\ 0 & -2 & 0 & -3 \end{pmatrix}$.

Theorem. If H_m and H_n are Hadamard matrices of orders m and n respectively, then $H_m \otimes H_n$ is a Hadamard matrix of order mn.

Proof. By calculation, we get $(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$ and $(A \otimes B)^T = A^T \otimes B^T$. Taking $A = C = H_m, B = D = H_n$ and using $I_m \otimes I_n = I_{mn}$, we get the conclusion that $(H_m \otimes H_n)(H_m \otimes H_n)^T = mI_m \otimes nI_n = mnI_{mn}$.

The Fast Hadamard Transform Theorem. Let $H_2 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ and I_n be the $n \times n$ identity matrix. For $1 \leq i \leq m$, let $M_{2m}^{(i)} = I_{2m-i} \otimes H_2 \otimes I_{2i-1}$. Then $H_{2m} = M_{2m}^{(1)} M_{2m}^{(2)} \cdots M_{2m}^{(m)}$ is a Hadamard matrix of order 2^m .

Proof. Induct on *m*. Case m = 1 is clear. For $1 \le i \le m$, since $I_{rs} = I_r \otimes I_s$, we see

$$M_{2^{m+1}}^{(i)} = I_{2^{m+1-i}} \otimes H_2 \otimes I_{2^{i-1}} = I_2 \otimes I_{2^{m-i}} \otimes H_2 \otimes I_{2^{i-1}} = I_2 \otimes M_{2^m}^{(i)} \quad \text{and} \quad M_{2^{m+1}}^{(m+1)} = H_2 \otimes I_{2^m}.$$

Using the formula $(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$, we have

$$M_{2^{m+1}}^{(1)}M_{2^{m+1}}^{(2)}\cdots M_{2^{m+1}}^{(m+1)} = (I_2 \otimes M_{2^m}^{(1)})(I_2 \otimes M_{2^m}^{(2)})\cdots (I_2 \otimes M_{2^m}^{(m)})(H_2 \otimes I_{2^m})$$
$$= H_2 \otimes (M_{2^m}^{(1)}M_{2^m}^{(2)}\cdots M_{2^m}^{(m)}I_{2^m}) = H_2 \otimes H_{2^m} = H_{2^{m+1}}.$$

Sylvester Construction Formula. If H_n is a Hadamard matrix, then the matrix $H_{2n} = H_2 \otimes H_n = \begin{pmatrix} H_n & H_n \\ H_n & -H_n \end{pmatrix}$ is also a Hadamard matrix.

Definition. A $n \times n$ matrix C is a <u>conference matrix of order n</u> if and only if the entries on its diagonal are 0's and the rest of the entries are ± 1 such that $CC^T = (n-1)I$.

<u>Theorem.</u> (1) If C is a symmetric (i.e. $C^T = C$) conference matrix of order n, then $H = \begin{pmatrix} I+C & -I+C \\ -I+C & -I-C \end{pmatrix}$ is a Hadamard matrix of order 2n.

(2) If C is an antisymmetric (i.e. $C^T = -C$) conference matrix, then H = I + C is a Hadamard matrix.

Proof. Just multiply H with H^T in (1) and (2). Use $C^T = -C$ in (1) and $C^T = C$ and $(\pm I \pm C)^T = \pm I \pm C^T$ in (2).

Next we will look at a way of producing conference matrices of large orders. Let $q = p^n$, where p is a prime and $n \in \mathbb{N} = \{1, 2, 3, ...\}$. A <u>field</u> is a set, like $\mathbb{Q}, \mathbb{R}, \mathbb{C}$, containing 0 and 1 such that we can define the 4 operations, namely addition, subtraction, multiplication and division (with nonzero denominators) with usual properties. While $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields with infinitely many elements, we would like to point out there are also finite fields. For example, $\mathbb{F}_2 = \{0, 1\}$ with usual properties of the 4 operations except 1 + 1 = 0.

In algebra, it is proved that for q of the form p^n as above, there exists a finite field \mathbb{F}_q with q elements. Also, in \mathbb{F}_q , $|\{x^2 : x \in \mathbb{F}_q \setminus \{0\}\}| = |\{y : y \neq x^2, x \in \mathbb{F}_q\}|$, i.e. the number of nonzero squares equals the number of nonsquares. Define $\mathcal{X} : \mathbb{F}_q \to \{0, 1, -1\}$ by

$$\mathcal{X}(a) = \begin{cases} 0 & \text{if } a = 0, \\ 1 & \text{if } a \text{ is a nonzero square in } \mathbb{F}_q \\ -1 & \text{if } a \text{ is a nonsquare in } \mathbb{F}_q. \end{cases}$$

can be used to define a useful $q \times q$ matrix Q as follows. Let the elements of \mathbb{F}_q be $a_0, a_1, \ldots, a_{q-1}$ with $a_0 = 0$. Define the *ij*-entry of Q to be $Q_{ij} = \mathcal{X}(a_i - a_j)$, where $0 \leq i, j < q$. Then Q satisfies $QQ^T = qI - J, QJ = JQ = O$, where J is the $q \times q$ matrix with 1 in all entries. In 1933, Paley observed that the $(q + 1) \times (q + 1)$ matrix

$$C = \begin{pmatrix} 0 & 1 & \cdots & 1 \\ \pm 1 & & & \\ \vdots & & Q \\ \pm 1 & & & \end{pmatrix}$$

(where the \pm signs are chosen in such a way that C is symmetric if $q \equiv 1 \pmod{4}$ or antisymmetric if $q \equiv 3 \pmod{4}$) is a conference matrix of order q+1. These produce many Hadamard matrices of large orders.

Paley's Theorem (1933). If $q = p^n$ for some prime p and $n \in \mathbb{N}$, then a Hadamard matrix of order q + 1 exists if $q \equiv 3 \pmod{4}$ and a Hadamard matrix of order 2(q + 1) exists if $q \equiv 1 \pmod{4}$.

+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	+	+ +	+ +	+ -	+ -	+	+	+	$^+$	+
-+++-++++-	+	+ +	+ -		+ +	-	+	—	-	+
- -++-++++	+	+ +	+ +		- +	+	_	$^+$	_	_
-+-++	+	+ -	+ +	+ -	- +	-	+	—	$^+$	_
++++-+++	+	+ -	- +	+ -	+ +	-	_	+	_	+
+ - + + - + + - + + + +	+	+ +		+ •	+ +	+	_	_	$^+$	_
- +++++++++	-	- +	+ +	· + ·	+ -		-	-	_	_
- +++++++++++++++++++++++++++++++++		- + + -	+ + + -	· + ·	+ -++ -++ -++ -++ -++ -++ -++ -+++ -+++-+++-++++++	-	_	+	-+	_
++++++++++++++++++++++++++++++++++	 + +	- + + - + +	+ + + - - +	· + ·	+ - + -	-	-	+	- + +	- +
$\begin{array}{c}+++++++\\ +++++-+++\\ +++++-++\\ +++++-+\\ +++++++-+\\ \end{array}$	- + +	- + + - + + + -	+ + + - - + + -	· + ·	+ - + - 		-	- + -	- + + -	- + +
$\begin{array}{c}+++++++\\ +++++-++\\ +++++-++\\ +++++++-\\ ++++++++\\ -++++++++\\ -++++++++\\ -++++++++$	- + + + +	- + + - + + + -	+ + + - + - + - + -	· + ·	+ - + - + -		- - - +	- + - -	- + - -	- + +

In the figure, + means 1 and - means -1. The Hadamard matrices of order 12 shown are constructed from the Paley matrices of order 11 + 1 and 5 + 1.

<u>Reed-Muller Codes.</u> With the existence of large order of Hadamard matrices, they provided important applications in error correction of signals. In 1954, D. E. Muller and I. S. Reed introduced the so-called Reed-Muller code, which became famous in 1972 when it was used in transmitting pictures of Mars and Saturn taken from US spacecrafts. The pictures were divided into a 600×600 grid of pixels, each pixel captured the shades of gray in a scale of 0 to $63 = 2^6 - 1$. So in binary, it is 6 bits of (0,1)-signals. For a picture, this took $6 \times 600^2 = 2, 160,000$ bits and additional bits were introduced to detect and correct bit errors in transmission due to noisy channels.

To understand the error correction method by Reed-Muller, we will define some terms.

Definitions. (1) A <u>m-ary word</u> of length n is sequence of n symbols, where each symbol is an element in a set $S = \{s_1, s_2, \ldots, s_m\}$ called the <u>alphabet</u>. The set of all m-ary words of length n is denoted by S^n (or H(n,m) called the <u>Hamming space</u>). Typically, we will take $S = \mathbb{F}_q$ for some q.

(2) A <u>code</u> with M <u>codewords of length n</u> is a subset of $S^n = \mathbb{F}_q^n$ with M elements. Typically, we consider binary (i.e. 2-ary) words and take q = 2 so that the alphabet is $\mathbb{F}_2 = \{0, 1\}$ and a codeword of length n is consisted of n 0 or 1 symbols that is in the code.

(3) The <u>Hamming metric</u> is the function $d: \mathbb{F}_q^n \to \{0, 1, 2, 3, \ldots\}$ defined by

$$d(a_1a_2...a_n, b_1b_2...b_n) = |\{i : a_i \neq b_i, i = 1, 2, ..., n\}|.$$

For all $x, y, z \in \mathbb{F}_q^n$, the Hamming metric satisfies the property that (1) $d(x, y) \ge 0$ with equality if and only if x = y; (2) d(x, y) = d(y, x) and (3) $d(x, z) \le d(x, y) + d(y, z)$. Next, we define $d(C) = \min\{d(x, y) : x \ne y \text{ for } x, y \in C\}$.

(4) A $(\underline{n, M, d})$ -code is a code with M codewords, each is of length n and d is the minimum distance between two distinct codewords. A code in \mathbb{F}_q^n is <u>linear</u> if and only if $x, y \in C$ implies $x + y \in C$. Also, For codes in \mathbb{F}_2^n , the <u>weight</u> of a word $a_1a_2 \cdots a_n$ is defined to be $w(a_1a_2 \ldots a_n) = |\{i : a_i \neq 0, i = 1, 2, \ldots, n\}|$ so that d(x, y) = w(x - y) due to -y = y.

Example. Let n = 8 and $S = \mathbb{F}_2 = \{0,1\}$. Then \mathbb{F}_2^8 has $2^8 = 256$ words and let $C = \{00000000, 00001111, 11110000, 11111111\}$ be the code with 4 codewords. The minimum distance d(C) between two distinct codewords is 4. The sum of two codewords is a codeword. So C is a binary linear (8, 4, 4)-code.

Now 11000000 is a word in \mathbb{F}_2^8 , but it is not a codeword in the code C. The minimum distance from 11000000 to a codeword in C is d(11100000, 11110000) = 1. We say there is a one bit error in 11100000. In error correction schemes, 11100000 will be replaced by the codeword 11110000 as it is closest codeword to 11100000.

<u>Theorem.</u> Let C be a code. For every word $y \notin C$, let there be a $x \in C$ with $d(x, y) \leq t$.

(1) If $d(C) \ge t + 1$, then C can detect up to t errors.

(2) If $d(C) \ge 2t + 1$, then the code C can correct up to t errors in any codeword.

Proof. (1) If $d(C) \ge t + 1$, then for all $z \in C$ with $z \ne x$, we must have $d(z, y) \ge 1$ for otherwise $d(x, z) \le d(x, y) + d(y, z) < t + 1$, contradicting $d(C) \ge t + 1$. So y contains at least 1 and at most t errors from every codeword.

(2) If $d(C) \ge 2t + 1$, then for all $z \in C$ with $z \ne x$, we must have $d(z, y) \ge t + 1$ for otherwise $d(x, z) \le d(x, y) + d(y, z) < 2t + 1$, contradicting $d(C) \ge 2t + 1$. Therefore, x is the only codeword that can allow y to have at most t errors.

Definition. For m = 1, 2, 3, ..., the <u>Reed-Muller code</u> R(1, m) is the span of the rows of the $(m + 1) \times 2^m$ generating matrix G, where column j is $2^{m+1} - 1 + j$ in base 2 for $j = 1, 2, ..., 2^m$. Below let 1_n be the row vector with all n coordinates equal 1.

Example. R(1,3) has generating matrix $G = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$. Row 1 is the

vector 1_8 , row 2 is the vector v_3 , row 3 is the vector v_2 and row 4 is the vector v_1 .

<u>Remarks.</u> R(1,m) is a $(2^m, 2^{m+1}, 2^{m-1})$ code since there are $M = 2^{m+1}$ codewords (consist of the sums of every k rows for $k = 0, 1, \ldots, m+1$), each has length $n = 2^m$ and minimum distance $d = 2^{m-1}$. By part (2) of the last theorem, R(1,m) is capable of correcting $|(2^{m-1}-1)/2| = 2^{m-2}-1$ bit errors.

Encoding Scheme. If each pixel is assigned one of the 2^{m+1} colors, then write the *j*-th color in base 2 as a row vector v, then vG is the codeword corresponding to the color.

Decoding Scheme. If vG was sent and a word r is received (which may or may not be a codeword), then use the fast Hadamard transform to write down the H_{2^m} Hadamard matrix and do the following steps:

<u>Step 1.</u> If $r = (r_1, r_2, \dots, r_{2^m})$, then let $F = ((-1)^{r_1}, (-1)^{r_2}, \dots, (-1)^{r_{2^m}})$.

<u>Step 2.</u> Let x be a coordinate of FH_{2^m} with largest absolute value. If $|x| \neq 2^m$, then let $a_m a_{m-1} \cdots a_1$ be |x| in base 2 and go to step 3, otherwise, the codeword is r and stop.

<u>Step 3.</u> If x > 0, then the codeword is $a_m v_m + a_{m-1} v_{m-1} + \cdots + a_1 v_1$, otherwise it is $1_{2^m} + a_m v_m + a_{m-1} v_{m-1} + \cdots + a_1 v_1$.

Example. In R(1,3) coding scheme, if a vG was sent and r = (10000011) is received, then F = (-1, 1, 1, 1, 1, 1, -1, -1) and $FH_8 = (2, -2, 2, -2, 2, -2, -6, -2)$. The maximum absolute value of the coordinates of FH_8 is |-6| = 6, which is 110 in base 2. The correct codeword is $1_8 + 1v_3 + 1v_2 + 0v_1 = (11000011)$. So the second bit of r was an error.

Exercises. (1) Compute $H_8 = H_2 \otimes H_2 \otimes H_2$.

(2) Prove that $(A \otimes B) \otimes C = A \otimes (B \otimes C)$. Give an example $A \otimes B \neq B \otimes A$.

(3) Prove that $(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$ and $(A \otimes B)^T = A^T \otimes B^T$.

(4) Prove that a Hadamard matrix of order n exists, where n is a multiple of 4 and at most 100 (except for 92). (*Hint*: Use Paley's Theorem for n = 12, 20, 28, 36, 44, 52, 60, 68, 76, 84, 100. The remaining cases can be taken care of by using $H_{mn} = H_m \otimes H_n$.)