
Hadamard Matrices and Reed-Muller Codes

Hadamard Matrices. In the 19th century, Hadamard considered the sizes of the deter-
minants of n × n matrices A with all entries in [−1, 1]. Since the norm of each row is at
most

√
n and the absolute value of the determinant is a measure of the volume of the box

formed by its row vectors in R
n. It is natural to conclude the determinant is at most nn/2

and the row vectors should be orthogonal. For example, let row 1 be 1 1 and row 2 to be
1 −1, then the area of the square formed by these two vectors is 2. Matrices that have +1
or −1 as entries with orthogonal rows and orthogonal columns are important in various
applications.

Definition. A n×n matrix H is a Hadamard matrix (of order n) if and only if its entries
are ±1 and it satisfies HHT = nI. Two Hadamard matrices are equivalent if and only if
one of them can be obtained by the other after permuting rows or columns or multiplying
rows or columns by −1. A Hadamard matrix is normalized if and only if all entires of
its first row and first column are +1. (Clearly, every Hadamard matrix is equivalent to a
normalized one.) Often the enties of a Hadamard matrix are written as + or −, which
corresponds to 1 or −1 respectively.

Example. ( 1 ) ,

(
1 1
1 −1

)
,

⎛
⎜⎝

+ + + +
+ + − −
+ − + −
+ − − +

⎞
⎟⎠ are normalized Hadamard matrices of

orders 1, 2, 4 respectively.

Theorem. If H is a Hadamard matrix of order n, then n = 1, 2 or n ≡ 0 (mod 4).

Proof. The cases n < 4 are easy to check. For n ≥ 4, first normalize H. Since the top 2
rows are orthogonal, row 2 contains n/2 +’s and n/2 −’s. By permuting columns, we may
assume the +’s in row 2 are in the first n/2 entries and the −’s are in the last n/2 entries.
For row 3, let there be a +’s under those columns with +,+ as top 2 entries, b −’s under
those columns with +,+ as top 2 entries, c +’s under those columns with +,− as top 2
entries, d −’s under those columns with +,− as top 2 entries.

Then a + b = n/2 and c + d = n/2. Taking inner product of row 1 and row 3, we get
a − b + c − d = 0. Taking inner product of row 2 and row 3, we get a − b − c + d = 0.
Solving the 4 equations of a, b, c, d, we get n = 4a = 4b = 4c = 4d.

To produce Hadamard matrices of large orders, we introduce some auxiliary concepts.
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Definition. Let A be a m × n matrix with entries aij and B be another matrix. The
Kronecker product (or tensor product) of A and B (denoted by A ⊗ B) is the matrix

A ⊗ B =

⎛
⎜⎜⎝

a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am,2B · · · amnB

⎞
⎟⎟⎠ .

Example. For A =
(

1 0
2 3

)
, B =

(
2 4
0 −1

)
, A ⊗ B=

(
1B 0B
2B 3B

)
=

⎛
⎜⎝

2 4 0 0
0 −1 0 0
4 8 6 12
0 −2 0 −3

⎞
⎟⎠ .

Theorem. If Hm and Hn are Hadamard matrices of orders m and n respectively, then
Hm ⊗ Hn is a Hadamard matrix of order mn.

Proof. By calculation, we get (A⊗B)(C ⊗D) = (AC)⊗ (BD) and (A⊗B)T = AT ⊗BT .
Taking A = C = Hm, B = D = Hn and using Im ⊗ In = Imn, we get the conclusion that
(Hm ⊗ Hn)(Hm ⊗ Hn)T = mIm ⊗ nIn = mnImn.

The Fast Hadamard Transform Theorem. Let H2 =
(

1 1
1 −1

)
and In be the n×n

identity matrix. For 1 ≤ i ≤ m, let M
(i)
2m=I2m−i⊗H2⊗I2i−1 . Then H2m = M

(1)
2m M

(2)
2m · · ·M (m)

2m

is a Hadamard matrix of order 2m.

Proof. Induct on m. Case m = 1 is clear. For 1 ≤ i ≤ m, since Irs = Ir ⊗ Is, we see

M
(i)
2m+1= I2m+1−i⊗H2⊗I2i−1= I2⊗I2m−i⊗H2⊗I2i−1= I2⊗M

(i)
2m and M

(m+1)
2m+1 = H2⊗I2m .

Using the formula (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD), we have

M
(1)
2m+1M

(2)
2m+1 · · ·M (m+1)

2m+1 = (I2 ⊗ M
(1)
2m )(I2 ⊗ M

(2)
2m ) · · · (I2 ⊗ M

(m)
2m )(H2 ⊗ I2m)

= H2 ⊗ (M (1)
2m M

(2)
2m · · ·M (m)

2m I2m) = H2 ⊗ H2m = H2m+1 .

Sylvester Construction Formula. If Hn is a Hadamard matrix, then the matrix H2n =

H2 ⊗ Hn =
(

Hn Hn

Hn −Hn

)
is also a Hadamard matrix.

Definition. A n × n matrix C is a conference matrix of order n if and only if the entries
on its diagonal are 0’s and the rest of the entries are ±1 such that CCT = (n − 1)I.

Theorem. (1) If C is a symmetric (i.e. CT = C) conference matrix of order n, then

H =
(

I + C −I + C
−I + C −I − C

)
is a Hadamard matrix of order 2n.

(2) If C is an antisymmetric (i.e. CT = −C) conference matrix, then H = I + C is a
Hadamard matrix.
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Proof. Just multiply H with HT in (1) and (2). Use CT = −C in (1) and CT = C and
(±I ± C)T = ±I ± CT in (2).

Next we will look at a way of producing conference matrices of large orders. Let q = pn,
where p is a prime and n ∈ N = {1, 2, 3, . . .}. A field is a set, like Q, R, C, containing 0 and
1 such that we can define the 4 operations, namely addition, subtraction, multiplication
and division (with nonzero denominators) with usual properties. While Q, R, C are fields
with infinitely many elements, we would like to point out there are also finite fields. For
example, F2 = {0, 1} with usual properties of the 4 operations except 1 + 1 = 0.

In algebra, it is proved that for q of the form pn as above, there exists a finite field Fq

with q elements. Also, in Fq, |{x2 : x ∈ Fq \ {0}}| = |{y : y �= x2, x ∈ Fq}|, i.e. the number
of nonzero squares equals the number of nonsquares. Define X : Fq → {0, 1,−1} by

X (a) =

⎧⎨
⎩

0 if a = 0,
1 if a is a nonzero square in Fq

−1 if a is a nonsquare in Fq.

can be used to define a useful q × q matrix Q as follows. Let the elements of Fq be
a0, a1, . . . , aq−1 with a0 = 0. Define the ij-entry of Q to be Qij = X (ai − aj), where
0 ≤ i, j < q. Then Q satisfies QQT = qI − J,QJ = JQ = O, where J is the q × q matrix
with 1 in all entries. In 1933, Paley observed that the (q + 1) × (q + 1) matrix

C =

⎛
⎜⎜⎝

0 1 · · · 1
±1
... Q

±1

⎞
⎟⎟⎠

(where the ± signs are chosen in such a way that C is symmetric if q ≡ 1 (mod 4) or
antisymmetric if q ≡ 3 (mod 4)) is a conference matrix of order q+1. These produce many
Hadamard matrices of large orders.

Paley’s Theorem (1933). If q = pn for some prime p and n ∈ N, then a Hadamard
matrix of order q + 1 exists if q ≡ 3 (mod 4) and a Hadamard matrix of order 2(q + 1)
exists if q ≡ 1 (mod 4).

     
In the figure, + means 1 and − means −1. The Hadamard matrices of order 12 shown are
constructed from the Paley matrices of order 11 + 1 and 5 + 1.
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Reed-Muller Codes. With the existence of large order of Hadamard matrices, they pro-
vided important applications in error correction of signals. In 1954, D. E. Muller and
I. S. Reed introduced the so-called Reed-Muller code, which became famous in 1972 when
it was used in transmitting pictures of Mars and Saturn taken from US spacecrafts. The
pictures were divided into a 600×600 grid of pixels, each pixel captured the shades of gray
in a scale of 0 to 63 = 26 − 1. So in binary, it is 6 bits of (0,1)-signals. For a picture, this
took 6 × 6002 = 2, 160, 000 bits and additional bits were introduced to detect and correct
bit errors in transmission due to noisy channels.

To understand the error correction method by Reed-Muller, we will define some terms.

Definitions. (1) A m-ary word of length n is sequence of n symbols, where each symbol
is an element in a set S = {s1, s2, . . . , sm} called the alphabet. The set of all m-ary words
of length n is denoted by Sn (or H(n,m) called the Hamming space). Typically, we will
take S = Fq for some q.

(2) A code with M codewords of length n is a subset of Sn = F
n
q with M elements. Typ-

ically, we consider binary (i.e. 2-ary) words and take q = 2 so that the alphabet is
F2 = {0, 1} and a codeword of length n is consisted of n 0 or 1 symbols that is in the code.

(3) The Hamming metric is the function d : F
n
q → {0, 1, 2, 3, . . .} defined by

d(a1a2 . . . an, b1b2 . . . bn) = |{i : ai �= bi, i = 1, 2, . . . , n}|.

For all x, y, z ∈ F
n
q , the Hamming metric satisfies the property that (1) d(x, y) ≥ 0 with

equality if and only if x = y; (2) d(x, y) = d(y, x) and (3) d(x, z) ≤ d(x, y) + d(y, z). Next,
we define d(C) = min{d(x, y) : x �= y for x, y ∈ C}.
(4) A (n,M, d)-code is a code with M codewords, each is of length n and d is the minimum
distance between two distinct codewords. A code in F

n
q is linear if and only if x, y ∈ C

implies x + y ∈ C. Also, For codes in F
n
2 , the weight of a word a1a2 · · · an is defined to be

w(a1a2 . . . an) = |{i : ai �= 0, i = 1, 2, . . . , n}| so that d(x, y) = w(x − y) due to −y = y.

Example. Let n = 8 and S = F2 = {0, 1}. Then F
8
2 has 28 = 256 words and let

C = {00000000, 00001111, 11110000, 11111111} be the code with 4 codewords. The mini-
mum distance d(C) between two distinct codewords is 4. The sum of two codewords is a
codeword. So C is a binary linear (8, 4, 4)-code.

Now 11000000 is a word in F
8
2, but it is not a codeword in the code C. The minimum

distance from 11000000 to a codeword in C is d(11100000, 11110000) = 1. We say there is
a one bit error in 11100000. In error correction schemes, 11100000 will be replaced by the
codeword 11110000 as it is closest codeword to 11100000.

Theorem. Let C be a code. For every word y �∈ C, let there be a x ∈ C with d(x, y) ≤ t.

(1) If d(C) ≥ t + 1, then C can detect up to t errors.

(2) If d(C) ≥ 2t + 1, then the code C can correct up to t errors in any codeword.
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Proof. (1) If d(C) ≥ t + 1, then for all z ∈ C with z �= x, we must have d(z, y) ≥ 1 for
otherwise d(x, z) ≤ d(x, y) + d(y, z) < t + 1, contradicting d(C) ≥ t + 1. So y contains at
least 1 and at most t errors from every codeword.

(2) If d(C) ≥ 2t + 1, then for all z ∈ C with z �= x, we must have d(z, y) ≥ t + 1 for
otherwise d(x, z) ≤ d(x, y) + d(y, z) < 2t + 1, contradicting d(C) ≥ 2t + 1. Therefore, x is
the only codeword that can allow y to have at most t errors.

Definition. For m = 1, 2, 3, . . . , the Reed-Muller code R(1,m) is the span of the rows of
the (m + 1) × 2m generating matrix G, where column j is 2m+1 − 1 + j in base 2 for
j = 1, 2, . . . , 2m. Below let 1n be the row vector with all n coordinates equal 1.

Example. R(1, 3) has generating matrix G =

⎛
⎜⎝

1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎞
⎟⎠ . Row 1 is the

vector 18, row 2 is the vector v3, row 3 is the vector v2 and row 4 is the vector v1.

Remarks. R(1,m) is a (2m, 2m+1, 2m−1) code since there are M = 2m+1 codewords
(consist of the sums of every k rows for k = 0, 1, . . . ,m + 1), each has length n = 2m

and minimum distance d = 2m−1. By part (2) of the last theorem, R(1,m) is capable of
correcting 
(2m−1 − 1)/2� = 2m−2 − 1 bit errors.

Encoding Scheme. If each pixel is assigned one of the 2m+1 colors, then write the j-th
color in base 2 as a row vector v, then vG is the codeword corresponding to the color.

Decoding Scheme. If vG was sent and a word r is received (which may or may not be
a codeword), then use the fast Hadamard transform to write down the H2m Hadamard
matrix and do the following steps:

Step 1. If r = (r1, r2, . . . , r2m), then let F = ((−1)r1 , (−1)r2 , . . . , (−1)r2m ).

Step 2. Let x be a coordinate of FH2m with largest absolute value. If |x| �= 2m, then let
amam−1 · · · a1 be |x| in base 2 and go to step 3, otherwise, the codeword is r and stop.

Step 3. If x > 0, then the codeword is amvm + am−1vm−1 + · · · + a1v1, otherwise it is
12m + amvm + am−1vm−1 + · · · + a1v1.

Example. In R(1, 3) coding scheme, if a vG was sent and r = (10000011) is received,
then F = (−1, 1, 1, 1, 1, 1,−1,−1) and FH8 = (2,−2, 2,−2, 2,−2,−6,−2). The maximum
absolute value of the coordinates of FH8 is | − 6| = 6, which is 110 in base 2. The correct
codeword is 18 + 1v3 + 1v2 + 0v1 = (11000011). So the second bit of r was an error.

Exercises. (1) Compute H8 = H2 ⊗ H2 ⊗ H2.

(2) Prove that (A ⊗B) ⊗ C = A ⊗ (B ⊗ C). Give an example A ⊗B �= B ⊗ A.

(3) Prove that (A ⊗B)(C ⊗D) = (AC) ⊗ (BD) and (A ⊗ B)T = AT ⊗ BT .
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(4) Prove that a Hadamard matrix of order n exists, where n is a multiple of 4 and at most
100 (except for 92). (Hint: Use Paley’s Theorem for n = 12, 20, 28, 36, 44, 52, 60, 68, 76, 84,
100. The remaining cases can be taken care of by using Hmn = Hm ⊗ Hn.)
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