Hadamard Matrices and Reed-Muller Codes

Hadamard Matrices. In the 19th century, Hadamard considered the sizes of the determinants of $n \times n$ matrices A with all entries in $[-1,1]$. Since the norm of each row is at most \sqrt{n} and the absolute value of the determinant is a measure of the volume of the box formed by its row vectors in \mathbb{R}^{n}. It is natural to conclude the determinant is at most $n^{n / 2}$ and the row vectors should be orthogonal. For example, let row 1 be 11 and row 2 to be $1-1$, then the area of the square formed by these two vectors is 2 . Matrices that have +1 or -1 as entries with orthogonal rows and orthogonal columns are important in various applications.

Definition. A $n \times n$ matrix H is a Hadamard matrix (of order n) if and only if its entries are ± 1 and it satisfies $H H^{T}=n I$. Two Hadamard matrices are equivalent if and only if one of them can be obtained by the other after permuting rows or columns or multiplying rows or columns by -1 . A Hadamard matrix is normalized if and only if all entires of its first row and first column are +1 . (Clearly, every Hadamard matrix is equivalent to a normalized one.) Often the enties of a Hadamard matrix are written as + or - , which corresponds to 1 or -1 respectively.

Example. (1), $\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right),\left(\begin{array}{llll}+ & + & + & + \\ + & + & - & - \\ + & - & + & - \\ + & - & - & +\end{array}\right)$ are normalized Hadamard matrices of orders 1, 2, 4 respectively.

Theorem. If H is a Hadamard matrix of order n, then $n=1,2$ or $n \equiv 0(\bmod 4)$.
Proof. The cases $n<4$ are easy to check. For $n \geq 4$, first normalize H. Since the top 2 rows are orthogonal, row 2 contains $n / 2+$'s and $n / 2$-'s. By permuting columns, we may assume the + 's in row 2 are in the first $n / 2$ entries and the -'s are in the last $n / 2$ entries. For row 3 , let there be $a+$'s under those columns with,++ as top 2 entries, $b-$'s under those columns with,++ as top 2 entries, $c+$'s under those columns with,+- as top 2 entries, d-'s under those columns with,+- as top 2 entries.

Then $a+b=n / 2$ and $c+d=n / 2$. Taking inner product of row 1 and row 3 , we get $a-b+c-d=0$. Taking inner product of row 2 and row 3 , we get $a-b-c+d=0$. Solving the 4 equations of a, b, c, d, we get $n=4 a=4 b=4 c=4 d$.

To produce Hadamard matrices of large orders, we introduce some auxiliary concepts.

Definition. Let A be a $m \times n$ matrix with entries $a_{i j}$ and B be another matrix. The

$$
A \otimes B=\left(\begin{array}{cccc}
a_{11} B & a_{12} B & \cdots & a_{1 n} B \\
a_{21} B & a_{22} B & \cdots & a_{2 n} B \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} B & a_{m, 2} B & \cdots & a_{m n} B
\end{array}\right)
$$

Example. For $A=\left(\begin{array}{ll}1 & 0 \\ 2 & 3\end{array}\right), B=\left(\begin{array}{cc}2 & 4 \\ 0 & -1\end{array}\right), A \otimes B=\left(\begin{array}{cc}1 B & 0 B \\ 2 B & 3 B\end{array}\right)=\left(\begin{array}{cccc}2 & 4 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 4 & 8 & 6 & 12 \\ 0 & -2 & 0 & -3\end{array}\right)$.
Theorem. If H_{m} and H_{n} are Hadamard matrices of orders m and n respectively, then $H_{m} \otimes H_{n}$ is a Hadamard matrix of order $m n$.

Proof. By calculation, we get $(A \otimes B)(C \otimes D)=(A C) \otimes(B D)$ and $(A \otimes B)^{T}=A^{T} \otimes B^{T}$. Taking $A=C=H_{m}, B=D=H_{n}$ and using $I_{m} \otimes I_{n}=I_{m n}$, we get the conclusion that $\left(H_{m} \otimes H_{n}\right)\left(H_{m} \otimes H_{n}\right)^{T}=m I_{m} \otimes n I_{n}=m n I_{m n}$.
The Fast Hadamard Transform Theorem. Let $H_{2}=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$ and I_{n} be the $n \times n$ identity matrix. For $1 \leq i \leq m$, let $M_{2^{m}}^{(i)}=I_{2^{m-i}} \otimes H_{2} \otimes I_{2^{i-1}}$. Then $H_{2^{m}}=M_{2^{m}}^{(1)} M_{2^{m}}^{(2)} \cdots M_{2^{m}}^{(m)}$ is a Hadamard matrix of order 2^{m}.

Proof. Induct on m. Case $m=1$ is clear. For $1 \leq i \leq m$, since $I_{r s}=I_{r} \otimes I_{s}$, we see
$M_{2^{m+1}}^{(i)}=I_{2^{m+1-i}} \otimes H_{2} \otimes I_{2^{i-1}}=I_{2} \otimes I_{2^{m-i}} \otimes H_{2} \otimes I_{2^{i-1}}=I_{2} \otimes M_{2^{m}}^{(i)} \quad$ and $\quad M_{2^{m+1}}^{(m+1)}=H_{2} \otimes I_{2^{m}}$.
Using the formula $(A \otimes B)(C \otimes D)=(A C) \otimes(B D)$, we have

$$
\begin{aligned}
M_{2^{m+1}}^{(1)} M_{2^{m+1}}^{(2)} \cdots M_{2^{m+1}}^{(m+1)} & =\left(I_{2} \otimes M_{2^{m}}^{(1)}\right)\left(I_{2} \otimes M_{2^{m}}^{(2)}\right) \cdots\left(I_{2} \otimes M_{2^{m}}^{(m)}\right)\left(H_{2} \otimes I_{2^{m}}\right) \\
& =H_{2} \otimes\left(M_{2^{m}}^{(1)} M_{2^{m}}^{(2)} \cdots M_{2^{m}}^{(m)} I_{2^{m}}\right)=H_{2} \otimes H_{2^{m}}=H_{2^{m+1}}
\end{aligned}
$$

Sylvester Construction Formula. If H_{n} is a Hadamard matrix, then the matrix $H_{2 n}=$ $H_{2} \otimes H_{n}=\left(\begin{array}{cc}H_{n} & H_{n} \\ H_{n} & -H_{n}\end{array}\right)$ is also a Hadamard matrix.

Definition. A $n \times n$ matrix C is a conference matrix of order n if and only if the entries on its diagonal are 0 's and the rest of the entries are ± 1 such that $C C^{T}=(n-1) I$.

Theorem. (1) If C is a symmetric (i.e. $C^{T}=C$) conference matrix of order n, then $H=\left(\begin{array}{cc}I+C & -I+C \\ -I+C & -I-C\end{array}\right)$ is a Hadamard matrix of order $2 n$.
(2) If C is an antisymmetric (i.e. $C^{T}=-C$) conference matrix, then $H=I+C$ is a Hadamard matrix.

Proof. Just multiply H with H^{T} in (1) and (2). Use $C^{T}=-C$ in (1) and $C^{T}=C$ and $(\pm I \pm C)^{T}= \pm I \pm C^{T}$ in (2).

Next we will look at a way of producing conference matrices of large orders. Let $q=p^{n}$, where p is a prime and $n \in \mathbb{N}=\{1,2,3, \ldots\}$. A field is a set, like $\mathbb{Q}, \mathbb{R}, \mathbb{C}$, containing 0 and 1 such that we can define the 4 operations, namely addition, subtraction, multiplication and division (with nonzero denominators) with usual properties. While $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields with infinitely many elements, we would like to point out there are also finite fields. For example, $\mathbb{F}_{2}=\{0,1\}$ with usual properties of the 4 operations except $1+1=0$.

In algebra, it is proved that for q of the form p^{n} as above, there exists a finite field \mathbb{F}_{q} with q elements. Also, in $\mathbb{F}_{q},\left|\left\{x^{2}: x \in \mathbb{F}_{q} \backslash\{0\}\right\}\right|=\left|\left\{y: y \neq x^{2}, x \in \mathbb{F}_{q}\right\}\right|$, i.e. the number of nonzero squares equals the number of nonsquares. Define $\mathcal{X}: \mathbb{F}_{q} \rightarrow\{0,1,-1\}$ by

$$
\mathcal{X}(a)= \begin{cases}0 & \text { if } a=0 \\ 1 & \text { if } a \text { is a nonzero square in } \mathbb{F}_{q} \\ -1 & \text { if } a \text { is a nonsquare in } \mathbb{F}_{q} .\end{cases}
$$

can be used to define a useful $q \times q$ matrix Q as follows. Let the elements of \mathbb{F}_{q} be $a_{0}, a_{1}, \ldots, a_{q-1}$ with $a_{0}=0$. Define the $i j$-entry of Q to be $Q_{i j}=\mathcal{X}\left(a_{i}-a_{j}\right)$, where $0 \leq i, j<q$. Then Q satisfies $Q Q^{T}=q I-J, Q J=J Q=O$, where J is the $q \times q$ matrix with 1 in all entries. In 1933, Paley observed that the $(q+1) \times(q+1)$ matrix

$$
C=\left(\begin{array}{cccc}
0 & 1 & \cdots & 1 \\
\pm 1 & & & \\
\vdots & & Q & \\
\pm 1 & & &
\end{array}\right)
$$

(where the \pm signs are chosen in such a way that C is symmetric if $q \equiv 1(\bmod 4)$ or antisymmetric if $q \equiv 3(\bmod 4)$) is a conference matrix of order $q+1$. These produce many Hadamard matrices of large orders.
Paley's Theorem (1933). If $q=p^{n}$ for some prime p and $n \in \mathbb{N}$, then a Hadamard matrix of order $q+1$ exists if $q \equiv 3(\bmod 4)$ and a Hadamard matrix of order $2(q+1)$ exists if $q \equiv 1(\bmod 4)$.

In the figure, + means 1 and - means -1 . The Hadamard matrices of order 12 shown are constructed from the Paley matrices of order $11+1$ and $5+1$.

Reed-Muller Codes. With the existence of large order of Hadamard matrices, they provided important applications in error correction of signals. In 1954, D. E. Muller and I. S. Reed introduced the so-called Reed-Muller code, which became famous in 1972 when it was used in transmitting pictures of Mars and Saturn taken from US spacecrafts. The pictures were divided into a 600×600 grid of pixels, each pixel captured the shades of gray in a scale of 0 to $63=2^{6}-1$. So in binary, it is 6 bits of $(0,1)$-signals. For a picture, this took $6 \times 600^{2}=2,160,000$ bits and additional bits were introduced to detect and correct bit errors in transmission due to noisy channels.

To understand the error correction method by Reed-Muller, we will define some terms.
Definitions. (1) A $\underline{m \text {-ary word }}$ of length n is sequence of n symbols, where each symbol is an element in a set $S=\left\{s_{1}, s_{2}, \ldots, s_{m}\right\}$ called the alphabet. The set of all m-ary words of length n is denoted by S^{n} (or $H(n, m)$ called the Hamming space). Typically, we will take $S=\mathbb{F}_{q}$ for some q.
(2) A code with M codewords of length n is a subset of $S^{n}=\mathbb{F}_{q}^{n}$ with M elements. Typically, we consider binary (i.e. 2-ary) words and take $q=2$ so that the alphabet is $\mathbb{F}_{2}=\{0,1\}$ and a codeword of length n is consisted of $n 0$ or 1 symbols that is in the code.
(3) The $\underline{\text { Hamming metric }}$ is the function $d: \mathbb{F}_{q}^{n} \rightarrow\{0,1,2,3, \ldots\}$ defined by

$$
d\left(a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{n}\right)=\left|\left\{i: a_{i} \neq b_{i}, i=1,2, \ldots, n\right\}\right| .
$$

For all $x, y, z \in \mathbb{F}_{q}^{n}$, the Hamming metric satisfies the property that $(1) d(x, y) \geq 0$ with equality if and only if $x=y ;(2) d(x, y)=d(y, x)$ and $(3) d(x, z) \leq d(x, y)+d(y, z)$. Next, we define $d(C)=\min \{d(x, y): x \neq y$ for $x, y \in C\}$.
(4) A $\underline{(n, M, d) \text {-code }}$ is a code with M codewords, each is of length n and d is the minimum distance between two distinct codewords. A code in \mathbb{F}_{q}^{n} is linear if and only if $x, y \in C$ implies $x+y \in C$. Also, For codes in \mathbb{F}_{2}^{n}, the weight of a word $a_{1} a_{2} \cdots a_{n}$ is defined to be $w\left(a_{1} a_{2} \ldots a_{n}\right)=\left|\left\{i: a_{i} \neq 0, i=1,2, \ldots, n\right\}\right|$ so that $d(x, y)=w(x-y)$ due to $-y=y$.

Example. Let $n=8$ and $S=\mathbb{F}_{2}=\{0,1\}$. Then \mathbb{F}_{2}^{8} has $2^{8}=256$ words and let $C=\{00000000,00001111,11110000,11111111\}$ be the code with 4 codewords. The minimum distance $d(C)$ between two distinct codewords is 4 . The sum of two codewords is a codeword. So C is a binary linear ($8,4,4$)-code.

Now 11000000 is a word in \mathbb{F}_{2}^{8}, but it is not a codeword in the code C. The minimum distance from 11000000 to a codeword in C is $d(11100000,11110000)=1$. We say there is a one bit error in 11100000 . In error correction schemes, 11100000 will be replaced by the codeword 11110000 as it is closest codeword to 11100000 .

Theorem. Let C be a code. For every word $y \notin C$, let there be a $x \in C$ with $d(x, y) \leq t$.
(1) If $d(C) \geq t+1$, then C can detect up to t errors.
(2) If $d(C) \geq 2 t+1$, then the code C can correct up to t errors in any codeword.

Proof. (1) If $d(C) \geq t+1$, then for all $z \in C$ with $z \neq x$, we must have $d(z, y) \geq 1$ for otherwise $d(x, z) \leq d(x, y)+d(y, z)<t+1$, contradicting $d(C) \geq t+1$. So y contains at least 1 and at most t errors from every codeword.
(2) If $d(C) \geq 2 t+1$, then for all $z \in C$ with $z \neq x$, we must have $d(z, y) \geq t+1$ for otherwise $d(x, z) \leq d(x, y)+d(y, z)<2 t+1$, contradicting $d(C) \geq 2 t+1$. Therefore, x is the only codeword that can allow y to have at most t errors.

Definition. For $m=1,2,3, \ldots$, the Reed-Muller code $R(1, m)$ is the span of the rows of the $(m+1) \times 2^{m}$ generating matrix G, where column j is $2^{m+1}-1+j$ in base 2 for $j=1,2, \ldots, 2^{m}$. Below let 1_{n} be the row vector with all n coordinates equal 1 .

Example. $R(1,3)$ has generating matrix $G=\left(\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1\end{array}\right)$. Row 1 is the vector 1_{8}, row 2 is the vector v_{3}, row 3 is the vector v_{2} and row 4 is the vector v_{1}.

Remarks. $R(1, m)$ is a $\left(2^{m}, 2^{m+1}, 2^{m-1}\right)$ code since there are $M=2^{m+1}$ codewords (consist of the sums of every k rows for $k=0,1, \ldots, m+1$), each has length $n=2^{m}$ and minimum distance $d=2^{m-1}$. By part (2) of the last theorem, $R(1, m)$ is capable of correcting $\left\lfloor\left(2^{m-1}-1\right) / 2\right\rfloor=2^{m-2}-1$ bit errors.
Encoding Scheme. If each pixel is assigned one of the 2^{m+1} colors, then write the j-th color in base 2 as a row vector v, then $v G$ is the codeword corresponding to the color.

Decoding Scheme. If $v G$ was sent and a word r is received (which may or may not be a codeword), then use the fast Hadamard transform to write down the $H_{2^{m}}$ Hadamard matrix and do the following steps:
Step 1. If $r=\left(r_{1}, r_{2}, \ldots, r_{2^{m}}\right)$, then let $F=\left((-1)^{r_{1}},(-1)^{r_{2}}, \ldots,(-1)^{r_{2} m}\right)$.
Step 2. Let x be a coordinate of $F H_{2^{m}}$ with largest absolute value. If $|x| \neq 2^{m}$, then let $a_{m} a_{m-1} \cdots a_{1}$ be $|x|$ in base 2 and go to step 3 , otherwise, the codeword is r and stop.

Step 3. If $x>0$, then the codeword is $a_{m} v_{m}+a_{m-1} v_{m-1}+\cdots+a_{1} v_{1}$, otherwise it is $1_{2^{m}}+a_{m} v_{m}+a_{m-1} v_{m-1}+\cdots+a_{1} v_{1}$.

Example. In $R(1,3)$ coding scheme, if a $v G$ was sent and $r=(10000011)$ is received, then $F=(-1,1,1,1,1,1,-1,-1)$ and $F H_{8}=(2,-2,2,-2,2,-2,-6,-2)$. The maximum absolute value of the coordinates of $F H_{8}$ is $|-6|=6$, which is 110 in base 2 . The correct codeword is $1_{8}+1 v_{3}+1 v_{2}+0 v_{1}=(11000011)$. So the second bit of r was an error.

Exercises. (1) Compute $H_{8}=H_{2} \otimes H_{2} \otimes H_{2}$.
(2) Prove that $(A \otimes B) \otimes C=A \otimes(B \otimes C)$. Give an example $A \otimes B \neq B \otimes A$.
(3) Prove that $(A \otimes B)(C \otimes D)=(A C) \otimes(B D)$ and $(A \otimes B)^{T}=A^{T} \otimes B^{T}$.
(4) Prove that a Hadamard matrix of order n exists, where n is a multiple of 4 and at most 100 (except for 92). (Hint: Use Paley's Theorem for $n=12,20,28,36,44,52,60,68,76,84$, 100. The remaining cases can be taken care of by using $H_{m n}=H_{m} \otimes H_{n}$.)

