Hadamard Matrices and Reed-Muller Codes

Hadamard Matrices. In the 19th century, Hadamard considered the sizes of the deter-
minants of n X n matrices A with all entries in [—1,1]. Since the norm of each row is at
most y/n and the absolute value of the determinant is a measure of the volume of the box
formed by its row vectors in R™. Tt is natural to conclude the determinant is at most n"/?
and the row vectors should be orthogonal. For example, let row 1 be 1 1 and row 2 to be
1 —1, then the area of the square formed by these two vectors is 2. Matrices that have +1
or —1 as entries with orthogonal rows and orthogonal columns are important in various
applications.

Definition. A n x n matrix H is a Hadamard matriz (of order n) if and only if its entries
are +1 and it satisfies HH? = nl. Two Hadamard matrices are equivalent if and only if
one of them can be obtained by the other after permuting rows or columns or multiplying
rows or columns by —1. A Hadamard matrix is normalized if and only if all entires of
its first row and first column are +1. (Clearly, every Hadamard matrix is equivalent to a
normalized one.) Often the enties of a Hadamard matrix are written as + or —, which
corresponds to 1 or —1 respectively.

Example. (1), (1 _11) ) are normalized Hadamard matrices of

++ 4+

orders 1, 2, 4 respectively.

Theorem. If H is a Hadamard matrix of order n, then n = 1,2 or n =0 (mod 4).

Proof. The cases n < 4 are easy to check. For n > 4, first normalize H. Since the top 2
rows are orthogonal, row 2 contains n/2 +’s and n/2 —’s. By permuting columns, we may
assume the +’s in row 2 are in the first n/2 entries and the —’s are in the last n/2 entries.
For row 3, let there be a +’s under those columns with 4, + as top 2 entries, b —’s under
those columns with +,+ as top 2 entries, ¢ 4+’s under those columns with +, — as top 2
entries, d —’s under those columns with +, — as top 2 entries.
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Then a + b = n/2 and ¢ + d = n/2. Taking inner product of row 1 and row 3, we get
a — b+ c—d = 0. Taking inner product of row 2 and row 3, we get a — b —c+ d = 0.
Solving the 4 equations of a, b, ¢, d, we get n = 4a = 4b = 4c = 4d. a

To produce Hadamard matrices of large orders, we introduce some auxiliary concepts.
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Definition. Let A be a m x n matrix with entries a;; and B be another matrix. The
Kronecker product (or tensor product) of A and B (denoted by A ® B) is the matrix

anB  a2B -+ aipnB
aa1B  axB -+ a,B
A®B = .

a/mlB a/m,QB e a/mnB
2 4 0 O
1 0 2 4 1B 0B 0O -1 0 O
Example.]?‘orA—(2 3),B—(0 _1),A®B—(2B 3B)_ 4108 6 19
0o -2 0 -3

Theorem. If H,, and H, are Hadamard matrices of orders m and n respectively, then
H,, ® H,, is a Hadamard matrix of order mn.

Proof. By calculation, we get (A® B)(C @ D) = (AC)® (BD) and (A® B)T = AT @ BT.
Taking A=C = H,,,B=D = H, and using I, ® I,, = I,,,, we get the conclusion that
(H,, ® Hy,)(H,, ® Hn)T =ml,, @ nl, = mnl,,. a
1 1

1 -1
identity matrix. For 1 <¢ < m, let MQ(Q,:IQm—i@HQ@IQi—I. Then Hym = MQ(}n)MQ(?n) e MQ(:,?)
is a Hadamard matrix of order 2.

and I,, be the nxn

The Fast Hadamard Transform Theorem. Let ng(

Proof. Induct on m. Case m = 1 is clear. For 1 <i < m, since I,.,; = I, ® I, we see
M) = L i @Hy®Iyi = L@ Iym— i @ Ho@Ipia= Lo My and  MAm = Hy@Tom.
Using the formula (A ® B)(C ® D) = (AC) ® (BD), we have

= Hy@ (MM - M ) = Hy ® Hym = Hymer. [
Sylvester Construction Formula. If H,, is a Hadamard matrix, then the matrix Hs,, =

H, H,
Hy ® H, = (Hn o

) is also a Hadamard matrix.

Definition. A n x n matrix C' is a conference matriz of order n if and only if the entries
on its diagonal are 0’s and the rest of the entries are 1 such that CCT = (n — 1)1.

Theorem. (1) If C is a symmetric (i.e. CT = C) conference matrix of order n, then
0o ( I+C -I+C

I+C —I-— C’) is a Hadamard matrix of order 2n.

(2) If C is an antisymmetric (i.e. CT = —C) conference matrix, then H = I + C is a
Hadamard matrix.



Proof. Just multiply H with H? in (1) and (2). Use CT = —C in (1) and CT = C and
(I +£C)' =41+ CT in (2). a

Next we will look at a way of producing conference matrices of large orders. Let ¢ = p™,
where p is a prime and n € N = {1,2,3,...}. A field is a set, like Q, R, C, containing 0 and
1 such that we can define the 4 operations, namely addition, subtraction, multiplication
and division (with nonzero denominators) with usual properties. While Q, R, C are fields
with infinitely many elements, we would like to point out there are also finite fields. For
example, Fo = {0, 1} with usual properties of the 4 operations except 1 + 1 = 0.

In algebra, it is proved that for ¢ of the form p™ as above, there exists a finite field F,
with ¢ elements. Also, in Fy, |[{z%:z € F,\ {0}}| = [{y : y # 2%,z € F }|, i.e. the number
of nonzero squares equals the number of nonsquares. Define X : F, — {0,1, -1} by

0 ifa=0,
X(a) =< 1 if ais a nonzero square in F,,
—1 if a is a nonsquare in F,.

can be used to define a useful ¢ x ¢ matrix @) as follows. Let the elements of F, be
ap,ai,...,aq—1 with ag = 0. Define the ij-entry of @ to be Q;; = X(a; — a;), where
0 <14,j < q. Then Q satisfies QQT = qI — J,QJ = JQ = O, where J is the ¢ x ¢ matrix
with 1 in all entries. In 1933, Paley observed that the (¢ 4+ 1) x (¢ + 1) matrix

0 1 --- 1
+1

- Q

+1
(where the + signs are chosen in such a way that C is symmetric if ¢ = 1 (mod 4) or
antisymmetric if ¢ = 3 (mod 4)) is a conference matrix of order g+ 1. These produce many
Hadamard matrices of large orders.

Paley’s Theorem (1933). If ¢ = p™ for some prime p and n € N, then a Hadamard
matrix of order g + 1 exists if ¢ = 3 (mod 4) and a Hadamard matrix of order 2(q + 1)
exists if ¢ = 1 (mod 4).

H+r++++++++++ +H++++ ] FFF++
++—+++——- +— H++——+[+H-F+F——+
—|-++-+++-———+ HH+++ - —|+|+ -+ - -
—+-++-+++-—- =+ ++ |-+ -+ -
—|-+-—++—+++-—- H= =+ + |-+ -+
-t -+ —+++- +l+ — =+ |+ [+ - -+ =
————+—++—-+++ —J+++++[-]-———-
—+-——+- ++—++ H-+ - —+[-[-—-++-
—++-——+- ++—+ H+ -+ —|-|---++
—|+++-———+—++- +H=-+ -+ - —|+---+
——+++———+—++ H-=-+ -]+ +---
—|+-+++-———+—+ ++ - -+ |-+ + - -

In the figure, + means 1 and — means —1. The Hadamard matrices of order 12 shown are
constructed from the Paley matrices of order 11 + 1 and 5+ 1.
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Reed-Muller Codes. With the existence of large order of Hadamard matrices, they pro-
vided important applications in error correction of signals. In 1954, D. E. Muller and
I. S. Reed introduced the so-called Reed-Muller code, which became famous in 1972 when
it was used in transmitting pictures of Mars and Saturn taken from US spacecrafts. The
pictures were divided into a 600 x 600 grid of pixels, each pixel captured the shades of gray
in a scale of 0 to 63 = 26 — 1. So in binary, it is 6 bits of (0,1)-signals. For a picture, this
took 6 x 6002 = 2,160,000 bits and additional bits were introduced to detect and correct
bit errors in transmission due to noisy channels.

To understand the error correction method by Reed-Muller, we will define some terms.

Definitions. (1) A m-ary word of length n is sequence of n symbols, where each symbol
is an element in a set S = {s1,s2,..., sy} called the alphabet. The set of all m-ary words
of length n is denoted by S™ (or H(n,m) called the Hamming space). Typically, we will
take S = I, for some q.

(2) A code with M codewords of length n is a subset of S = F; with M elements. Typ-
ically, we consider binary (i.e. 2-ary) words and take ¢ = 2 so that the alphabet is
Fy = {0,1} and a codeword of length n is consisted of n 0 or 1 symbols that is in the code.

(3) The Hamming metric is the function d : Fj; — {0,1,2,3,...} defined by

d(alag...an,blbg...bn) = |{i:ai #bi,i:1,2,...,n}|.

For all z,y,z € F}, the Hamming metric satisfies the property that (1) d(x,y) > 0 with
equality if and only if x = y; (2) d(z,y) = d(y,x) and (3) d(z, z) < d(x,y) + d(y, z). Next,
we define d(C) = min{d(z,y) : x # y for z,y € C}.

(4) A (n,M.d)-code is a code with M codewords, each is of length n and d is the minimum
distance between two distinct codewords. A code in Fj is linear if and only if 2,y € C
implies © + y € C. Also, For codes in Fy, the weight of a word ajas - - - a, is defined to be
w(aras...an) = {i:a; #0,i=1,2,...,n}| so that d(z,y) = w(z — y) due to —y = y.

Example. Let n = 8 and S = Fy = {0,1}. Then F5 has 28 = 256 words and let

C = {00000000,00001111,11110000,11111111} be the code with 4 codewords. The mini-
mum distance d(C') between two distinct codewords is 4. The sum of two codewords is a
codeword. So C'is a binary linear (8,4, 4)-code.

Now 11000000 is a word in 5, but it is not a codeword in the code C. The minimum
distance from 11000000 to a codeword in C'is d(11100000,11110000) = 1. We say there is
a one bit error in 11100000. In error correction schemes, 11100000 will be replaced by the
codeword 11110000 as it is closest codeword to 11100000.

Theorem. Let C' be a code. For every word y & C, let there be a = € C with d(z,y) <t.
(1) If d(C) >t + 1, then C' can detect up to t errors.

(2) If d(C) > 2t + 1, then the code C can correct up to t errors in any codeword.
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Proof. (1) If d(C') > t + 1, then for all z € C with z # z, we must have d(z,y) > 1 for
otherwise d(z, z) < d(z,y) + d(y,z) <t + 1, contradicting d(C') > t + 1. So y contains at
least 1 and at most ¢ errors from every codeword.

(2) If d(C') > 2t + 1, then for all z € C' with z # x, we must have d(z,y) > t + 1 for
otherwise d(x, z) < d(x,y) + d(y, z) < 2t + 1, contradicting d(C') > 2t 4+ 1. Therefore, x is
the only codeword that can allow y to have at most ¢ errors.

Definition. For m = 1,2,3,..., the Reed-Muller code R(1,m) is the span of the rows of
the (m + 1) x 2™ generating matrix G, where column j is 2! — 1 4+ j in base 2 for

j=1,2,...,2™. Below let 1,, be the row vector with all n coordinates equal 1.

111 1 1 1 1 1

: : 0000 1 1 11 :

Example. R(1,3) has generating matrix G = 00110011l Row 1 is the

01 01 0101
vector 1g, row 2 is the vector vs, row 3 is the vector v and row 4 is the vector v;.
Remarks. R(1,m) is a (2™,2mT1 2m~1) code since there are M = 2™*! codewords
(consist of the sums of every k rows for k£ = 0,1,...,m + 1), each has length n = 2™

and minimum distance d = 2™, By part (2) of the last theorem, R(1,m) is capable of
correcting | (2m~1 —1)/2] = 2m72 — 1 bit errors.

Encoding Scheme. If each pixel is assigned one of the 2™*! colors, then write the j-th
color in base 2 as a row vector v, then vG is the codeword corresponding to the color.

Decoding Scheme. If vG was sent and a word 7 is received (which may or may not be
a codeword), then use the fast Hadamard transform to write down the Hym Hadamard
matrix and do the following steps:

Step 1. If r = (r1,72,...,7r2m), then let F' = ((—1)",(=1)",...,(=1)"=2™).

Step 2. Let x be a coordinate of F'Ham with largest absolute value. If |z| # 2™, then let
AmQm—1 - a1 be |z| in base 2 and go to step 3, otherwise, the codeword is r and stop.

Step 3. If x > 0, then the codeword is a;,vm + Gm—1Vm—1 + - -+ + a1v1, otherwise it is
lom + amvm + @m—1Vm—1 + -+ + arv1.

Example. In R(1,3) coding scheme, if a vG was sent and r = (10000011) is received,
then ' = (—1,1,1,1,1,1,—1,—1) and FHg = (2,-2,2,-2,2, -2, —6, —2). The maximum
absolute value of the coordinates of F'Hg is | — 6| = 6, which is 110 in base 2. The correct
codeword is 1g + 1lvg 4+ 1lvg 4+ 0v; = (11000011). So the second bit of r was an error.

Exercises. (1) Compute Hs = Hy ® Hy ® H,.
(2) Prove that (A® B) @ C = A® (B® C). Give an example A ® B # B® A.
(3) Prove that (A ® B)(C ® D) = (AC) ® (BD) and (A® B)T = AT @ BT,
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(4) Prove that a Hadamard matrix of order n exists, where n is a multiple of 4 and at most
100 (except for 92). (Hint: Use Paley’s Theorem for n = 12,20, 28, 36, 44, 52, 60, 68, 76, 84,
100. The remaining cases can be taken care of by using H,,,, = H,, ® H,,.)



